The effects of nitric oxide cooling and the photodissociation of molecular oxygen on the thermosphere/ionosphere system over the Argentine Islands
نویسندگان
چکیده
In the past the global, fully coupled, timedependent mathematical model of the Earth’s thermosphere/ionosphere/plasmasphere (CTIP) has been unable to reproduce accurately observed values of the maximum plasma frequency, foF2, at extreme geophysical locations such as the Argentine Islands during the summer solstice where the ionosphere remains in sunlight throughout the day. This is probably because the seasonal dependence of thermospheric cooling by 5.3 lm nitric oxide has been neglected and the photodissociation of O2 and heating rate calculations have been over-simplified. Now we have included an up-todate calculation of the solar EUV and UV thermospheric heating rate, coupled with a new calculation of a diurnally varying O2 photodissociation rate, in the model. Seasonally dependent 5.3 lm nitric oxide cooling is also included. With these important improvements, it is found that model values of foF2 are in substantially better agreement with observation. The height of the F2-peak is reduced throughout the day, but remains within acceptable limits of values derived from observation, except at around 0600 h LT. We also carry out two studies of the sensitivity of the upper atmosphere to changes in the magnitude of nitric oxide cooling and photodissociation rates. We find that hmF2 increases with increased heating, whilst foF2 falls. The converse is true for an increase in the cooling rate. Similarly increasing the photodissociation rate increases both hmF2 and foF2. These changes are explained in terms of changes in the neutral temperature, composition and neutral wind.
منابع مشابه
A combined solar and geomagnetic index for thermospheric climate
Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time seri...
متن کاملInfluence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014
Infrared radiative cooling of the thermosphere by carbon dioxide (CO2, 15 µm) and by nitric oxide (NO, 5.3 µm) has been observed for 12 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite. For the first time we present a record of the two most important thermospheric infrared c...
متن کاملEddy turbulence parameters inferred from radar observations at Jicamarca
Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007). In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower ...
متن کاملHigh correlations between temperature and nitric oxide in the thermosphere
Obtaining accurate predictions of the neutral density in the thermosphere has been a long-standing problem. During geomagnetic storms the auroral heating in the polar ionospheres quickly raises the temperature of the thermosphere, resulting in higher neutral densities that exert a greater drag force on objects in low Earth orbit. Rapid increases and decreases in the temperature and density may ...
متن کاملChanges in the thermosphere and ionosphere of Mars from Viking to MAVEN
We compare Viking and Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) observations of the thermosphere and ionosphere of Mars in order to test predictions of large variations in conditions over the solar cycle and with season. Substantial differences exist between the Viking observations at solar minimum and near aphelion and the MAVEN NGIMS ...
متن کامل